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a b s t r a c t

The positions of relative equilibrium of a satellite carrying a two-degree-of-freedom powered gyroscope,
in the axes of the framework of which only dissipative forces can act, are investigated within the limits of
a restricted circular problem. For the case when the “satellite - gyroscope” system possesses the property
of a gyrostat and the axis of the gyroscope frame is directed parallel to one of the principal central axes
of inertia of the satellite, all the equilibrium positions are found as a function of the magnitude of the
angular momentum of the rotor. It is established that the minimum number of equilibrium positions is
equal to 32 and, in certain ranges of values of the system parameters, it can reach 80. All the positions
satisfying the sufficient conditions for stability are also determined. The number of them is either equal
to 4 or 8 depending on the values of the system parameters.

© 2009 Elsevier Ltd. All rights reserved.

Up to the present time, the problem of the steady motions (equilibrium positions with respect to an orbital basis) of satellites carrying
powered rotors has been fairly fully investigated (Refs 1–4, 9, 10, etc.). The steady motions of satellites carrying powered gyroscopes have
been studied to a lesser extent. In the few papers on this topic, 5–8 only specific steady motions of a satellite with two-degree-of-freedom
and three-degree-of-freedom gyroscopes have been investigated.

In this paper, the problem of determining the set of all steady motions of a satellite, carrying a two-degree-of-freedom powered gyro-
scope, in a central gravitational field is formulated. A similar problem has been solved previously 11,12 for the case of a uniform external
field.

1. Formulation of the problem

A satellite consisting of a load-carrying rigid body (a housing) and a two-degree-of-freedom powered gyroscope is considered. It is
assumed that the rotor of the gyroscope rotates at a constant angular velocity with respect to the frame, the angle of rotation of the frame is
unrestricted and that the axis of the rotor is orthogonal to the axis of the frame (Fig. 1). We will specify the direction of the axis of suspension
of the frame with respect to the housing of the satellite by the unit vector s and we will denote the angle of rotation of the frame by x. We
will specify the current position of the axis of the rotor by the unit vector h(x), which is directed in the sense of the rotation of the rotor.
The angular momentum of the characteristic rotation of the rotor will then be given by the expression H̃ = H̃h, where H̃ = const > 0.

The steady motions of the satellite are analysed within the limits of a bounded circular problem, that is, assuming that the centre of
mass of the satellite moves in a circular Kepler orbit. The mutually orthogonal unit vectors r, n and � = n × r, directed along the radius of
the orbit, along the normal to the plane of the orbit, and along a tangent to the orbit respectively serve as the orbital basis. We will denote
the angular velocity of the orbital basis by � and the “reduced” angular momentum of the rotor by H = Hh, where H = H̃/˝ = const > 0.

The stationary points of the transformed potential energy of the system, which, in the general case when no constraints are imposed on
the geometry of the masses of the gyroscope, is given by the formula

(1.1)

correspond 1,2 to the positions of relative equilibrium of a satellite in a circular orbit.
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Fig. 1.

Here, U(x) is the energy of the potential forces acting in the axes of the frame and the inertia tensor of the system J = J(x) and the vectors
n and r are written in a basis which has its origin at the current centre of mass of the satellite and an unchanged orientation with respect
to the housing of the satellite.

When the gyroscope is statically balanced about the axis of the frame (the centre of mass of the gyroscope lies in the axis of the frame
s), the centre of mass of the satellite is fixed with respect to the housing and the term trJ will be a constant quantity and can be omitted in
expression (1.1). With the additional condition of dynamic symmetry of the gyroscope about the s axis, the satellite will be a gyrostat, that
is, its inertial tensor J will be invariant.

We will next assume that the satellite is a gyrostat and, among its principal central moments of inertia A, B and C, none is different from
the other. It is also assumed that only the moments of dissipative forces can act in the axes of the frame and that there are no potential
forces, that is, U(x)≡0. The special case when the axis of the frame of the gyroscope is set parallel to one of the principal central axes of
inertia of the satellite will be investigated in detail.

2. Steady motions

Since there are no potential forces in the axes of the frame of the gyroscope and the system is a gyrostat, its equilibrium positions can
be defined as the stationary points of the function

(2.1)

where the inertia tensor J and the vectors n and r are written in the basis of the principal central axes of inertia of the system e1e2e3
associated with the housing.

Since the vectors n and r are unit vectors and mutually orthogonal, then, using a Lagrangian function with the multiplies

(2.2)

we obtain the following system of equations for the equilibrium positions

(2.3)

(2.4)

(2.5)

The mutual orthogonality of the axis of the frame and the axis of the rotor also give the equation

(2.6)

Note that Eq. (2.5) describes the equilibrium condition of a gyroscope with respect to the housing of the satellite, and Eqs. (2.3) and (2.4)
are equivalent to the single equation

which describes the equilibrium condition of a satellite with a rotor with respect to the orbital basis.
The “direct” problem consists of finding the values of the angle x (the position of the rotor axis h) and the positions of the vectors r and

n as a function of the magnitude of the reduced angular momentum of the rotor H from system (2.3)–(2.6).
We introduce the following scalar functions of the vector r

(2.7)

From Eq. (2.4), we find

(2.8)
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Taking account of relations (2.8), the vector H is determined from Eq. (2.3) by the formula

(2.9)

Substituting expression (2.9) into Eqs. (2.6) and (2.5), we obtain the following equations

(2.10)

(2.11)

Equation (2.11) only contains the variable r and describes the possible values of the vector r for steady motions. The corresponding
values of the vectors n and H can be determined as two-valued functions of the vector r using formulae (2.8) and (2.9), expressing the factor
�1 from Eq. (2.10). Hence, the problem of determining of the set of all the steady motions of the system being considered can be reduced
to the problem of finding the set of all solutions of Eq. (2.11). The solution of the “direct” problem can be found by of an analysis of the
behaviour of the quantity H in the set of solutions (2.11) using formulae (2.8)–(2.10).

Note that, if the vector r is directed along one of the principal axes of inertia, then indeterminacies of the form 0/0 occur in formulae
(2.8) and (2.9). Hence, in the case of such solutions of Eq. (2.11), it is necessary to find the values of the vectors n and H directly from system
(2.3)–(2.6).

We will next consider the case when the axis of the frame of the gyroscope is parallel to one of the principal central axes of inertia of
the system. To be specific, we put S = e3. The angular momentum of the rotor is then determined in terms of the angle x, measured from
the e1 axis, by the expression

(2.12)

By virtue of Eq. (2.5), the vectors e3, h and n lie in one plane. Therefore, denoting the angle between the vectors h and n by y (Fig. 1), we
obtain the following representation for the vector n

(2.13)

Denoting the direction cosines of the vector r with axes e1, e2, e3 by r1, r2, r3, we find

(2.14)

After substituting expressions (2.14) into Eq. (2.11), we obtain the expression

(2.15)

which decomposes into two equations:

(2.16)

(2.17)

The vectors r, lying in one of the principal planes of inertia e1, e3 and e2, e3, are the solutions of Eq. (2.16). Omitting the intermediate
calculations, we present the equilibrium positions found from system (2.2)–(2.6), corresponding to the solutions of Eq. (2.16). Here, we use
the symbols �1, �2, �3 to represent multivalued solutions, each of which can take two values ±1 and, also, the following notation for the
difference between the moments of inertia

(2.18)

Two groups of equilibrium positions correspond to the solutions of Eq. (2.16). The first group consists of the “direct” equilibrium positions
(when the vectors of the orbital basis are directed along the principal axes of inertia of the system) which exist for any value H∈(0, +∞) and
are described by the formulae

(2.19)

(2.20)

The following “skew” equilibrium positions constitute the second group

(2.21)

(2.22)

Here, a1 = a, a2 = b.
Relations (2.19) and (2.20) define 32 equilibrium positions. In their turn, each of relations (2.21) and (2.22) defines 16 equilibrium

positions, the domains of existence of which are bounded by half-intervals of the values of H. Solutions (2.21) and (2.22) bifurcate from
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the corresponding solutions of (2.19) and (2.20) at the right-hand boundary points of the above-mentioned half-intervals. For example, the
solutions of (2.21) when k = 1 branch off from the four solutions of (2.20) when k = 1 for which �2 = −�3signa at the point H = |a|.

For values of H close to zero, the number of equilibrium positions described by formulae (2.19)–(2.22) is equal to 64 and, as the parameter
H increases, it reduces by 8 units on passing through each branching point, attaining a minimum value of 32.

Note that, for all the equilibrium positions found above, the axis of the rotor is parallel to one of the principal axes of inertia of the
satellite e1 or e2.

We will now investigate the solutions of Eq. (2.17) and the equilibrium positions corresponding to them. We define the vector r using
spherical coordinates

(2.23)

and then obtain

Substituting these expressions into Eq. (2.17), we arrive at a quadratic equation in the unknown ctg2� with coefficients which depend
on �. It can be shown that this equation only has real solutions when the inequality absin22� ≥ 0 is satisfied. In this case, the solution has
the form

(2.24)

where

and, for each angle �, it defines two values of the angle � in the range [0,�] and the set of solutions for the vector r consists of two curves
on a unit sphere which are symmetrical about the e1, e2 plane and are closed around the e3 axis. At the points sin2� = 0, the solutions of
(2.24) intersect with the solutions of Eq. (2.16). It therefore follows from the inequality absin22� ≥ 0 that Eq. (2.17) gives new solutions
which are different from the solutions of Eq. (2.16) only when the condition

(2.25)

is satisfied, that is, when the axis of the frame is set parallel to the axis of the greatest or the axis of the smallest moment of inertia of the
system. The set of equilibrium positions obtained here is described by formulae (2.24), (2.8) and (2.9) and is a four-valued one-parameter
set, the parameter of which is the angle �.

We will now consider the “direct” problem, that is, we will find how the equilibrium positions, defined by Eq. (2.17), depends on the
magnitude of the angular momentum of the rotor H.

We express the functions f and g2 in terms of the direction cosines of the vector r:

(2.26)

Whence, using Eq. (2.17) and the identity r2
1 + r2

2 + r2
3 = 1, we find the expressions for the squares of the direction cosines in terms of

the function f:

(2.27)

In turn, projecting the equality (2.9) onto the e1 and e2 axes, we obtain

(2.28)

The Lagrange multiplier �1 is determined from Eq. (2.10) by the formula

(2.29)

Using relations (2.29), (2.27) and (2.17), we obtain from Eqs. (2.28) a system in the variable z = f − C

(2.30)

Taking account of the equality H2
1 + H2

2 = H2, we transform this system to the following form

(2.31)
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Fig. 2.

(2.32)

It follows from Eqs (2.32) and inequality (2.25) that, for the solutions being considered, the sign of the variable z is the same as the sign
of the numbers a and b. The expression

(2.33)

therefore follows from Eq. (2.31), and, when this is substituted into Eq. (2.32), we obtain the equation

(2.34)

It defines a fourth-order curve which is symmetrical about the e1 and e2 axes. By virtue of condition (2.25), the principal axes e1 and e2
can be chosen such that the inequality a/b > 1 is satisfied. The behaviour of the curve as a function of the relation between the parameters
a and b will then have the form shown in Fig. 2.

The curves �1 and �2 correspond to the case when a/b < 4, where the parameters satisfy the inequality a/b < 8/5 in the case of the curve
�1 and the inequality a/b > 8/5 in the case of the curve �2. When a/b = 4, the curve is transformed into a “figure eight” �3 while the two
isolated symmetric curves �4 correspond to the case when a/b > 4. When b → 0, the curves �4 degenerate into two segments �5. All the
curves are “stretched” along the e1 axis which, in the case when a > 0, b > 0, will be the axis of greatest moment of inertia and, in the case
when a < 0, b < 0, it will be the axis of smallest moment of inertia.

The formula

(2.35)

follows from Eq. (2.34). This formula determines the dependence of the angle of rotation of the frame x on the magnitude of the angular
momentum of the rotor H for the equilibrium positions being considered. The range of values of the angular momentum H, for which
solutions (2.35) are defined, is given by the inequalities

(2.36)

(2.37)

For each internal point II from the above-mentioned range, formula (2.35) defines four values of the angle x.
We will now find the dependence of the vectors n and r on the magnitude of the parameter H for the set of equilibrium positions being

considered. From relations (2.8), we obtain

(2.38)

Substituting expressions (2.27) here and taking account of Eq. (2.17), we obtain

(2.39)
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In turn, it follows from Eq. (2.3), when account is taken of the equalities (2.29) and (2.39), that

Hence, substituting expression (2.33), we obtain the solution

(2.40)

which defines two values of the angle for each value of H. Since the vector n is defined by formula (2.13) in terms of the angles x and y
and the solution x(H) is four-valued, eight values of the vector n correspond to each value of H. In turn, the vector r is found from Eq. (2.3)
in terms of H, x and y (in terms of H and n) as a two-valued function according to the formula

(2.41)

Hence, 16 different equilibrium positions correspond to each point of H from the range of existence of the solutions being considered.
It follows from the above analysis of the dependence of all the equilibrium positions found on the magnitude of H that the total number of

equilibrium positions can reach 80 and that the minimum number of equilibrium positions is equal to 32. When H = 0, the angle x becomes
a cylindrical coordinate and it can take any value at the equilibrium positions of the system. At the same time, the number of equilibrium
orientations of the housing of the satellite with respect to the orbital basis becomes equal to 24.

Note that the set of equilibrium positions for the problem considered with a two-degree-of-freedom gyroscope can be interpreted as a
subset of the solutions of the analogous problem for a satellite with a rotor, the axis of which is parallel to the principal plane of inertia e1,
e2. 4,9,10 In the case of a problem with a rotor, the angle x is a fixed parameter and the equilibrium positions are determined from system
(2.3), (2.4). By determining the solutions of system (2.3), (2.4) for each value x∈[0, 2�] and different values of H and subsequently picking
out only those of them which satisfy Eq. (2.5), it is possible to obtain all the equilibrium positions corresponding to the angle x for the
problem with a gyroscope.

For example, for an angle x = 0, we shall have H = He1. The equilibrium positions of a satellite with a rotor corresponding to this case are
defined by six groups of solutions with four solutions in each group. 9 Picking out from these solutions only those that satisfy Eq. (2.15),
we obtain solutions described by relations (2.19)–(2.22) for �3 = 1, k = 1. Similarly, it is possible to obtain all the other equilibrium positions
(2.19)–(2.22) by considering the angles x = �/2, �, 3�/2.

The remaining solutions, which are described by formulae (2.35), (2.40) and (2.41), are determined from the solutions for the problem
with a rotor when x /= k�/2, where k is an integer. In this problem, the equilibrium positions of the satellite are defined by three groups of
solutions, 10 but condition (2.5) is only satisfied in the case of one of these groups and only for values of H which satisfy equality (2.35).

It should be noted that it is not advisable to use the above correlation to find the equilibrium positions for the problem with a gyroscope
directly from the solutions of the corresponding problem with a rotor. The solutions for the problem with a rotor, the axis of which is parallel
to the principal plane of inertia, are determined from equations of the fourth degree. At the same time, by taking account of condition (2.5)
in the final stage, as was done in this paper, one obtains simpler equations, the solutions of which describe the whole set of equilibrium
positions and are written in explicit form.

3. Analysis of the stability of the equilibrium positions

We will now find the equilibrium positions of the system which satisfy sufficient conditions for stability (which possess secular stability).
These positions will be stable regardless of the presence or absence of dissipation in the axes of the frame of the gyroscope.

Equilibrium positions in which the function (2.1) has a strictly local minimum possess secular stability. We will determine these solutions
in two stages. We will first find a solution which gives a strict minimum of the function (2.1) with respect to the angle x for a fixed orientation,
that is, for fixed values of the vectors n and r. Then, by substituting the result obtained into equality (2.1), we will determine the points
where there is a minimum of the function obtained with respect to the variables specifying the orientation.

Those solutions of Eq. (2.5)

(3.1)

for which the second derivative is positive, that is,

(3.2)

are points of a strict minimum of the function (2.1) with respect to the angle x.
Taking account of equality (2.6), the vector h is determined from Eq. (3.1) as a two-valued function of the vector n using the formula

(3.3)

Here, condition (3.2) is satisfied for that solution of (3.3) corresponding to the plus sign. Substituting this solution into equality (2.1),
we obtain the function

(3.4)

which depends solely on the orientation of the satellite in the orbital basis.
Using the Lagrange function with the multipliers

(3.5)



N.I. Amel’kin / Journal of Applied Mathematics and Mechanics 73 (2009) 169–178 175

we write the equations for the stationary points of the function (3.4) in the form

(3.6)

(3.7)

Since the vectors n and r are related by the conditions nTn = 1, rTr = 1, nTr = 0, those solutions, for which the second differential of the
Lagrange function (3.5), calculated for the set of variations dr, dn connected by the equations

(3.8)

is a strictly positive-definite quadratic form, will be the points of a strict minimum of the function (3.4).
Calculating the second differential of function (3.5), we obtain

(3.9)

We will express the variations dr and dn of the orbital basis vectors in terms of independent variations in u, � and w by means of the
following formulae

(3.10)

In this case, all the equations of (3.8) will be satisfied and we shall have

(3.11)

We express the Lagrange multipliers from Eqs (3.6) and (3.7) using the formulae

(3.12)

Substituting expressions (3.10)–(3.13) into equality (3.9) and taking account of the fact that it follows from Eq. (3.7) that �TJr = 0, we
obtain the following quadratic form of the three variables u, � and w

(3.13)

The quadratic form (3.13) is written for the general case of the position of the s axis. For the case s = e3 considered above, we have
sTn = siny and, denoting the projections of the vectors r and � on to the e3 axis by r3 and �3, we obtain

(3.14)

Those equilibrium positions for which condition (3.2) is satisfied and the quadratic form (3.14) is strictly positive-definite will satisfy the
sufficient conditions for stability. If, however, instead of condition (3.2), an inequality of the opposite sign is satisfied or there are negative
characteristic numbers among the characteristic numbers of the matrix of the quadratic form (3.14), then the function (2.1) will not have a
minimum (including a non-strict minimum) at the corresponding equilibrium positions.

We will now investigate the stability of the equilibrium positions found in Section 2, using equality (3.2) and the quadratic form (3.14).
Since, s = e3 in the problem considered, then, without loss of generality, the axes e1 and e2 can be numbered such that the inequality

(3.15)

is satisfied.
We will now consider solutions (2.19) when k = 1. For these solutions, condition (3.2) is satisfied for �2 = �3, that is, for the following four

equilibrium positions

(3.16)

For these solutions, we have �3 = 0, sin y = 0, �3 = 0, r2
3 = 1, and the quadratic form (3.14) becomes

(3.17)

The conditions for it to be positive-definite reduce to the inequalities

(3.18)
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It follows from these inequalities that the solutions (3.16) satisfy the sufficient conditions for stability only when C is the smallest
moment of inertia. The stability of these solutions holds for all values of H > 0.

Analysing the four solutions (2.19) in a similar manner when k = 2, for which condition (3.2) is satisfied when �2 = �3, we obtain that the
sufficient conditions for their stability are described by the inequalities

(3.19)

Since the first of these contradicts condition (3.15), not one of the solutions (2.19) when k = 2 satisfies the sufficient conditions for
stability.

Among the solutions (2.20) when k = 1, the following four equilibrium positions satisfy condition (3.2)

(3.20)

In this case, we have �3 = 0, sin y = 0, r3 = 0, �2
3 = 1, and the quadratic form (3.14) takes the form

(3.21)

The conditions for it to be positive-definite reduce to the inequalities

(3.22)

It follows from this that the solutions (3.20) when k = 1 satisfy the sufficient conditions for stability when C is either the middle or the
largest moment of inertia. At the same time, in the case when A> C > B, these solutions are stable for all values of H > 0 and, in the case when
C> A > B, stability occurs for values of H> C − B.

A similar analysis of the solutions (2.20) when k = 2 leads to the conclusion that none of them satisfies the sufficient conditions for
stability, since condition (3.15) is not satisfied for these solutions.

Solutions (2.21) when k = 1 are described by the relations

(3.23)

For them, we have

Conditions (3.2) and (3.15) then reduce to the double inequality C> A > B and the quadratic form (3.14) is written in the form

(3.24)

Applying Silvesters criterion, we obtain that, in the case when C> A > B, the quadratic form (3.24) is strictly positive-definite for all values
of y apart from the points siny = 0, that is, the equilibrium position (3.23) satisfy the sufficient conditions for stability over the whole range
of their existence apart from the branching point H = C − A.

In the case of solutions (2.21) when k = 2, the inequality C > B follows from condition (3.2) and the quadratic form (3.14) takes the form

(3.25)

The condition for it to be positive-definite reduces to the inequalities

which are incompatible for any value of y. Consequently, the solutions when k = 2 do not satisfy the sufficient conditions for stability.
The solutions (2.22) when k = 1 satisfy inequalities (3.2) and (3.15) in the case when C > A > B. For these solutions, we shall have

and the quadratic form (3.14) is written in the form

(3.26)
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Fig. 3.

We will now calculate the sum of the two diagonal elements of the form (3.26)

(3.27)

Since, when C > A > B, expression (3.27) takes negative values, the equilibrium positions (2.22) when k = 1 then do not satisfy the sufficient
conditions for stability. The same result is also established in a similar way for solution (2.22) when k = 2.

We will now investigate the stability of the equilibrium positions which correspond to the solutions of Eq. (2.17) and are described
by relations (2.35), (2.40) and (2.41). It follows from formula (2.40) that these solutions only satisfy condition (3.2) when C > A. We will
calculate the diagonal coefficient �ww in the quadratic form (3.14). Using relation (2.39) and the equality

we obtain

(3.28)

It follows from formula (2.33) and inequality (2.25) that, when C > A, the coefficient (3.28) takes negative values. Therefore, none of the
solutions being considered satisfies the sufficient conditions for stability.

Summarizing the results of the analysis, we will list all the equilibrium positions of the system which are stable in a secular sense.
If the axis of the frame of the gyroscope is set parallel to the axis of the smallest moment of inertia (A > B > C), then only four solutions

of (3.16) possess secular stability for all values of H > 0 (the left-hand side of Fig. 3).
If the axis of the frame is set parallel to the axis of the middle moment of inertia (A > C > B), then only four solutions of (3.20) possess

secular stability for all values of H > 0 (the right-hand side of Fig. 3).
If the axis of the frame of the gyroscope is set parallel to the greatest moment of inertia (C > A > B), then only four solutions (3.20) possess

secular stability in the range H > C − A but eight solutions (3.23) in the range 0 < H < C − A, which branch off from the solution (3.20) at the
point H = C − A (Fig. 4).

It follows from the above analysis that, for all of the stable equilibrium positions, the axis of the rotor is directed parallel to that one of
the principal axes of inertia e1 or e2 with respect to which the moment of inertia is greater and the angular momentum of the characteristic
rotation of the rotor has a positive projection on to the direction of the angular velocity of the orbital basis.

Note that, of the three versions of the arrangement of a gyroscope which have been considered, new stable equilibrium positions (which
are different from the stable equilibrium positions of a satellite without a gyroscope) are only obtained in the case when the axis of the
frame is set parallel of the axis of the greatest moment of inertia (Fig. 4). The same stable equilibrium positions can be obtained using a
rotor which is set parallel to the axis of the middle moment of inertia. However, the use of a gyroscope is preferable because, when there
is dissipation in the axes of the frame, damping of the oscillations of the satellite becomes possible and, in many cases, one can ensure
asymptotic stability of the equilibrium positions.

Fig. 4.
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